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ABSTRACT

The probability of m correlated random variables drawn from a multivariate X
normal distribution being non-negative is: ;
o0 [~ ] - -] :

/ / '"/ Q,.(z;,zg,...,z,.)azl,azg,...,az,.. 3

o Jo 0 g

Exact results for this probability integral are unavailable for m > 3. Ap-
proximations for higher dimensional problems have generally yielded poor
results except for special cases, such as compound symmetry, which is of
limited value in practice. The purpose of this paper is to present a gen-
eral approximation of this probability integral. The algorithm developed
here is computationally tractable for m = 50 and accurate for very general
correlational structures. The performance of this algorithm is compared to V
results based on Clark’s (1961) original approximation, Gaussian quadrature N
formulae, and Monte Carlo simulation methods. Application of this approx- N

(3
imation to problems of conditional dependence in IRT estimation problems v
is discussed. '
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1 INTRODUCTION .

With the renewed interest in marginal maximum likelihood methods (MML)

in item response theory (Bock and Aitken, 1981), the necessity for approx- :;
imating orthant probabilities of the multivariate normal distribution has .
arisen. In the MML estimation of item parameters, for example, all s < 2" X

orthant probabilities must be evaluated in order to obtain the likelihood
of the parameters of a given IRT model. Similarly, the same multivariate

normal orthant probabilities are required to obtain Bayesian estimates of ::'
ability assuming dichotomous scoring. '.;
Because IRT models assume conditional independence among the items, 3
that is, all association among the n items is completely explained by their o
joint association with the latent variables, m-dimensional Gaussian quadra- >
ture formulae have been used to provide the necessary orthant probability Ry
estimates. In this case, the simple “product formulae” for numerical inte- ¥
gration can be applied, because the residuals of the model have the simple N
uncorrelated multivariate normal distribution e ~ (0,071), where o7 is the .
‘ so-called item “uniqueness”, that is, 1 —a}, and a; is the item factor loading. 7
However, these numerical integrations become extremely expensive as the 5
dimensionality of the problem increases. To the extent that the items have a :t
simple factor structure, these approximations are accurate to any practical N
degree, however their behavior with more general correlational structures is !::
predictably poor and the extent of bias introduced into parameter estimates &
is unknown. R
In the general case, the probability that m correlated random variables .,:;
drawn from a multivariate normal distribution are non-negative is: %
00 foo 00 o,

/ / / Om (21,22,...,2m) 021,022,...,0Zpm. "

o Jo 0 i

Exact results for the bivariate normal distribution have been obtained from o
the work of Sheppard (see Kendall and Stuart, 1973). David (1953) has "
shown that trivariate normal probabilities are a direct extension of Shep- i:',
pard’s earlier result. However, exact results for m-variate normal probabil- Ny
ities for m > 3 are unknown. o
Kendall (1941), McFadden (1960) and Moran (1948) have developed in- s
finite expansions of the quadrivariate normal integral, but these results are "
computationally cumbersome. More tractable representations have been .:?
proposed by Abrahamson (1964), Dutt (1973), Dutt and Lin (1975) and N

Childs (1967). Even in the quadrivariate case, however, these approxima-
tions are intractable for general correlational structures and have, therefore,

- - § r .V" gt 0 » LI\ 'If.i'. '\l.-) '_.'-"\"\- ")‘p*-h ," . w
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only been applied under restrictions of compound symmetry or band matri-
ces in which p = .5 just off the main diagonal.

In a previous paper, we have developed an IRT-type model for estimating
trend in correlated proportions (Gibbons and Bock, 1987). In this case the
binary items are not components of the same test, but rather, dichotomous
classifications order .d in time. Since the association between temporally
proximal responses will typically be greater than the association between
temporally distal responses, the assumption of conditional independence is
untenable and residual autocorrelation must be assumed. At the sugges-
tion of James Heckman (personal communication) we adapted the so-called
Clark Algorithm (Clark, 1961) to the problem of evaluating the likelihood of
this model. Our modified Clark Algorithm combines both Gaussian quadra-
ture formulae with Clark’s original approximation which is extremely fast.
The purpose of this paper is to present details of this modified approxima-
tion, illustrate its computation, and determine its accuracy in a few relevant
examples.

2 THE CLARK ALGORITHM

Designating positive directions 1 and negative directions 0, we may repre-
sent the probability of the positive orthant of an m-variate distribution by
P(1,1,...,1), that of the negative orthant by P(0,0,...,0), and that of any
one of the other 2™ ~ 2 orthants by inserting the appropriate pattern of 1’s
and 0’s. The Clark algorithm provides a computing approximate for any
orthant of a multivariate normal distribution with arbitrary vector mean
and covariance matrix. Clark (1961) derives the following formulas.

Let any three successive components from an m-variate vector, Yo be
distributed:

o}
~N 00,410 o?
Vt+l I‘|+l ) Ti+1Pis+1 O 2
Oi0i+2Pii+2 Oi+10i+2Pi+145+2 Ou3

Let §; = max(y;) = w, and compute the probability that y;4y > ¢ as
follows:




(B = piv1)/Gi+1s

set Ziy1

where ;,-’.,,1 6.-’ + 0.-’“ = 20i0i+1Pii+1-

Then P(yi+1 > §) P(%+1—-9>0)
(- 241)

the value of the univariate normal distribution function at the standard
deviate —z,..;.

Now let §i+1 = max(y,¥i+1) and assume (as an approximation) that
(vi+2, Ji+1) is bivariate normal with means,

-
P, Tl -

Nk

B(ivz) = E(Wier) = is2
“(§i+l) = E(gﬂ»l) = m"(zi+1)+#i+1@(“zi+l)+$.'+1¢(z.'+1),
variances
@ oHyisr) = E(Whia) - Ewiva) = o,
"z(giﬂ) = 5(!7.'+1)‘52(17i+1),
where

E(gizﬂ) = (#.2 + U.?)Q(liﬂ) + (#34.1 + ".’2+1)‘I’("zc‘+l) + (i + Biv1)$i+10(zi41),
and correlation

0iPii+2®(2i+1) + Gir1pi41i+2P(— 2is1)
o(Fi+1)

P(Fi+1, ¥i+2) =
Then,

P (yi+2 = max(yi, Yi+1,%i+2)) = P((¥i+2 = %i+1 > 0) N (yiv2 — i > 0))

is approximated by

P(yi+z > §iv1) = P(vi+2 ~ §i41 > 0)

Bivz = W(Fie1) )

L
(\/;.'2” + 03} (§iv1) — 200420 (Fiv1)P(Fi1, Yiv2)




Assuming as a working approximation that ¢ ; is normally distributed
with the above mean and variance, we may therefore proceed, recursively
from § = 1to s = m— 1, where ym, is an independent dummy variate with
mean zero and variance zero (i.e. ym+1 = 0).

Then

P(ym4+1 = max(y1, 42, .-, Ym+1))
= P((ym+1 =9 > 0)N (yms1 — 2 > 0)N...N (Ym+1 — ym > 0))
= P((-n1>0)Nn(~y2>0)N...N(—ym > 0))
approximates the probability of the negative orthant of the specified mul-
tivariate normal distribution. The probability of any other orthant can be

obtained by reversing the signs of the variates corresponding to 1's in the
orthant pattern.

‘ 3 COMPUTATIONAL EXAMPLE

For computational purposes, it is convenient to set ®(-z) = 1 — ®(z) and
rewrite Clark’s equations as:

BHi+1) = siva+ (4 — pis1)®(zie1) + Gie16(2i01),

5(--'24»1 = “?-H + ”-‘zﬂ + (u! + o} - /"?4—1 - 0.'2+1)‘I’(2-'+1)
+(1i + Bir1)6ir19(2ir1),

o (§is1) E(#241) ~ E€¥(Fiv),

o} (Fiv1,¥its) = O (Yie1, Yin2) + 03 (5, ws2)
-o? (!Ii+x, !Ii+2)]q’(3o'+l)

Given this transformation, the ith step now only requires a single evaluation
of ®(.) and ¢(.). For example, suppose that

3

-------
e
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f;‘
o
P
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X
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Given these values for u and I, the probability of the negative orthant (- - fif
-) can be obtained as follows. "
',‘
First find P(ys > §3) as: *‘
3
¢ = \Jo}+oi-20}, ot
= /3+2-2(1)=1.732 :‘
‘.
z3 = (p1-m2)/s2 A
= (3-12)/1.732 = 577 )
- N
E(§2) = ma+ (m1— p2)®(22) + 520(23) o
= 24 (3 - 2)®(.577) + 1.7324(.577) = 3.30 o
[y
]
¢ E@) = Wy+od+(ul+0} - i~ 0d)0(22)
+(u1 + p2)620(22)
= 6+ 6®(.577) + 5(1.732)¢(.577) = 13.23 -
. . . : K3
o*(§2) = £(5) - EX(52) -
= 13.23 - 3.30° = 2.34 !
o
2~ 2 2 2 )
o’(§2,y8) = o035+ (015 — 035)%(22) :ﬁ
= P(577) =
Therefore; ‘ :;:
N
]
- ’
Plys> i) = &=t X
\/dg + 0’; - 20’%3 eyt
"‘
2-33 ,
@ = 222 0
(\/2 ¥2.34- 2(.72)) 3
o
To determine P(gs > 0) we set y, = 0 and o2 = 0, and compute: 'f
& N
6 %,
Y
A}
“
“~
L%
OOy at*'-'ﬁ' - “. XX I'.‘l‘,\‘. '.'?'.. Aot '; A0 "“. o, - - - -4. "\ ‘.P J“ . ) ,r -( OO N N .' 4‘ )‘,-“-,n\.ﬁ'\.n' - \f J"‘.r:’,;‘.' 'f
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e
% .

U
¢ WY
3
s = &3 + 03 — 253, vw
'l
= /234 +2-2(.72) = 1.703 \
N
"
z3 = (@2 — ps)/ss O]
= (3.3-2)/1.703 = .763 T
%,
3
E(#s) = ns+ (2 — ps)®(zs) + g3¢(zs) ::
= 2+ (3.3 - 2)®(.763) + 1.703$(.763) = 3.518 "
I
E(§3) = w3+od- (B3 +55 - ud - 0d)®(zs) B
+(i2 + ns)gsé(zs) 83
= 6+ 7.23®(.763) + 5.3(1.703)¢(.763) = 14.307 X

Ny

-

o (§s) = E(53) - £X(gs) 4t
= 14.307 - 3.518% = 1.931 ‘
b
- A
o (Gs,va) = ol + (of, - 03,)®(23) d
N
Therefore; N,
BT
|\n
- ; ',a:'
Plye>§s) = ® u4~ jis :

\/af + 43 - 253,
0-3.518 X
= = ®(-2.53 -~
(\/o+1.931—2(o)) (=253) 3
Hence, P(0 > ¢3) = ®(-2.53) = .006, which is the probability of orthant (- ‘.
-4). .
o
4 THE MODIFIED CLARK ALGORITHM #1
In our previous paper (Gibbons and Bock, 1987), we noted that the accu- sj

racy of the Clark approximation diminishes with increasing magnitude of

5 51
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the correlations. If we apply the Clark approximation directly to estimates
of inter-item correlations, it will generally yield biased results due to the
size of correlations. This is true regardless of whether the correlation ma-
trix exhibits the property of conditional independence. Alternatively, if we
examine the residual inter-item correlation matrix at fixed points on the
ability scale, we will observe the identity matrix for conditionaily indepen-
dent solutions or small residual correlations for those item pairs that are
conditionally dependent. In light of this, we evaluate the response function
at several fixed points on the ability scale using Gauss-Hermite quadrature,
and correct these estimates using the Clark algorithm. These corrections de-
pend only on the residual inter-item correlations, which in practice should
be quite small. The first modified Clark algorithm proceeds as follows.

Step 1 Obtain a factor solution of dimension m, using full information fac-
tor analysis for binary data (Bock and Aitken, 1981, and Bock, Gibbons
and Muraki, 1986) if the correlations are unknown or using principal factor
analysis if the item-correlations are known, as in the following simulations.

Step 2 Using the estimated factor loading matrix A, compute the esti-
mated residual correlation matrix R ., as pj; = 12 Aiidyj for ¢ # 7 else
pﬁj = 1, where t is the dimensionality of the space we are conditioning on
plus 1. For example, in the unidimensional case, t = 2. This correlation

matrix represents the degree of residual conditional dependence.

Step 8 Given the previous values of item thresholds +, and item factor load-
ings A,; for the t — 1 prinical factors, compute the invariant item parameters
a; (slope) and b; (intercept). For example, in the unidimensional case,

a; = /\,/\/l - A;
and
—7,/,/1—,\}

b
Step 5 At each point on the ability dimension (i.e. at each quadrature node
X, ) compute the value of the response function for each item as:

Zp = ¢ + ang

where ¢; = —a,b; and X are the nodes of the Gauss-Hermite polynomial
(see Stroud and Sechrest, 1966).

ot
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Step 6 At each quadrature point, substitute the values of z;, for the mean
vector 4 and R’ for the covariance matrix T and compute the Clark approxi-

mated probability C((X ). Accumulating these probabilities over all quadra- ,f.-

ture nodes for a given response pattern (z;) yields the desired marginal i

probability estimate o
[+ ]

Ma) = [ s .

q9 :'9.

= 2 G(X)A(Xs) ¥

k=1 ne

where A(X,) is the corresponding weight at quadrature node Xj.

We note that in practice, the effect of assuming normality of the max- :‘»:
imum of two jointly normal variables, produces probability overestimates "
in the tails of the distribution. As such, we apply an empirically based ::
correction factor to these probability estimates which involves raising the v

’ Clark adjusted probability estimate to the power 1.3. This correction factor -
appears to provide the neccessary adjustment across the entire quadrature 5
space. :.:3

5 THE MODIFIED CLARK ALGORITHM #2

Algorithm #1 is computationally expensive, because the Clark approxima-

A
tion must be evaluated for each response pattern at every point in the '
quadrature space. In a problem with 1000 unique response patterns and he
two principal factors, each with 10 quadrature points, the Clark approxima- '
tion must be invoked 100,000 times per iteration. An alternate approach is 3]
to simply use the Clark approximated probability as a correction term, ap- .
plied directly to the usual probability estimate obtained from the quadrature )
solution; that is: by

(
), )
haz) = C / R(0)#(9)3(6) "
"
= Y A(X)AXS) A
k=1 )
W
0%
where B
B '
- 4
y 9 .::‘
)
N

-~

/ ¥ T

S . R nn T .
vl ""'s:'t"'ﬂ‘“ . '1'." "l. ‘\‘..0".1‘3'“ LW ALY, '. L My WU NG ST, T ) IOt §
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A = P(z,...,z,) "
oo M ) %
= [T Mo - pi@1-16(0)d0) :
e i1 ¥
e n :
= (I pi(Xa)® 1 = pi(Xa)])' %] A(Xa)
k=1 j=1 : 2
Returning to the previous example of 1000 unique response patterns and 1:
10 quadrature points in each of two dimensions (i.e. 100 points in total), the v

Clark algorithm need only be invoked 1000 times per iteration; that is, once
for each response pattern in contrast to 100,000 times for algorithm #1.
The probabilities obtained using algorithm #2 differ from those obtained

from algorithm #1 in that they will not sum to unity even if all response .
patterns are realized in the sample. When the number of items is small, say .
ten or less, these probabilities can be normalized to yield the appropriate 'o'
‘ metric; however, in larger problems (i.e. with eleven or more items) normal- -
ization is not possible, because all patterns generally are not realized in even N
large samples. We note, however, that maximum likelihood estimation does .
not require normalized probabilities as long as their relative magnitudes are o
invariant to transformation of scale. This condition does hold for algorithm :‘
#2. "+
6 ILLUSTRATION 3
.l
To examine the accuracy of the modified Clark Algorithm, we designed the ::
following limited simulation study. First, we simulated one million five- .
variate normal deviates for each of the following conditions: ¥
"
1) compound symmetric matrices with p = 0.2 through p = 0.8. For exam- ::':
ple. .:_o
1.0 3

05 10
R=1]05 05 1.0
05 05 05 1.0 0
0.5 05 05 05 1.0 o

2) Autocorrelated matrices with p = 0.2 through p = 0.8. For example,

10 o

)
v , » v - ; O, < ARG N LA
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1.0
0.5 1.0
R=]025 05 1.0
0125 025 05 1.0
0.0625 0.125 0.25 0.5 1.0

8) Conditionally dependent correlation matrices with principal factor load-
ings of A11 = A12 = A1s = A14 = A1 ranging from 0.5 to 0.7 and two method
related factors, the first with A3; = A32 = A3s ranging from 0.2 through 0.7
and Az = Az = 0.0, and the second with Ag; = A3z = Ass = 0.0 and
Asq = Ags ranging from 0.2 through 0.7.

For example, the correlation matrix corresponding to factor pattern ma-
trix:

0.7 03 0.0
0.7 03 00
A=1]07 03 0.0
0.7 0.0 03
0.7 0.0 03

1.0
0.58 1.0
R=1058 058 1.0
049 049 049 1.0
049 049 049 0.58 1.0

In each of the above simulated conditions, the mean vectors were zero,
therefore, the binary response patterns were obtained by dichotomizing the
simulated normal deviates at zero. The dichotomized response patterns
were then sorted and unique patterns and their respective frequencies were
accumulated. When divided by one million, these frequencies yield the so
called Monte Carlo probability estimates which should be exact to at least
four decimal places; that is, the standard error of the simulated probabilities
is:

(P:'(ll; p,-))%

which has a maximum value of:

o
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(2822)" - oo

Accuracy of the estimated probabilities was determined by computing
the average absolute deviation for each method (i.e. the average absolute
difference between Monte Carlo and Clark estimates over all response pat-
terns).

In an effort to examine the properties of these approximations in larger
sets of items, that are more typical in practice, we produced two 10-item
simulations. The first, consisted of ten million multivariate normal deviates
for the compound symmetric case (p = 0.5), and the second for the condi-
tionally dependent example with principal factor loadings of A1; = 0.6 and
method related factor loadings of A2;;...Az210 = 0.4 and As11...As20 = 0.4.

7 RESULTS

Results of the simulations are displayed in Tables 1-5. Inspection of Table
1, which displays results for the five-item compound symmetric case, reveals
that on average, both the quadrature solution and the modified Clark al-
gorithm #2, recover the Monte Carlo estimates to four decimal places (i.e.
average difference p = 0.5, .0002) whereas the modified Clark algorithm #1
is slightly less accurate (i.e. average difference p = 0.5, .0009). In contrast,
the original Clark algorithm is inferior to the other methods and this in-
feriority increases with larger correlations (p = 0.8, average difference =
.0163). These results are exactly as expected for a conditionally indepen-
dent correlational structure. In contrast, inspection of Table 2 reveals that
autocorrelation produces inferior estimates for the quadrature solution (eg.
p = 0.5, average difference = .0070) whereas the modified Clark algorithms
produced more consistent estimates across the entire range (eg. p = 0.5,
average difference for algorithm #1 = .0041 and for algorithm #2 = .0036).
Algorithm #2 was in general, slightly better than algorithm #1. The orig-
inal Clark algorithm produced reasonable estimates through p = 0.5, but
deteriorated quickly for values of p > 0.5. Since the elements of the correla-
tion matrix become more homogeneous for extreme values of p (eg. p = 0.8)
it is not surprising that the performance of the quadrature solution stabilized
for values of p > 0.6.

In terms of five-item conditionally dependent correlational structures
(see Table 3), the modified Clark algorithms performed similarly whereas
the original Clark algorithm and the quadrature solution were consistently

12




inferior, for even moderate dependence (A3; or As; > 0.3). The modified 2
Clark algorithm #2 produced average differences that were slightly smaller N
than algorithm #1 and as little as one-sixth the size of the standard quadra- "
ture solution. Overall, performance was better for solutions in which the . :{
principal factor loadings were smaller (eg. A;; = 0.5,A3; = 0.5,2s; = 0.0, X
average difference for algorithm #£1 = .0034, average difference for algorithm 3

#2 = .0031, average difference for original Clark = .0041 and average differ-
ence for quadrature = .0084 versus Ay; = 0.7, A3; = 0.5, A\s; = 0.0, algorithm
#1 = .0068, algorithm #2 = .0048, original Clark = .0091, and quadrature
=.0099).

-_-
- -
-

W

Results for the larger item-sets are presented in Table 4 for the compound '.:f
symmetric case and Table 5 for the conditional dependent case. In general, o
results for the larger item-sets parallel those of the smaller item-sets. For -
the compound symmetric case (p = 0.5) the average differences were .000065 N
for algorithm #1, .000007 for algorithm #2, .000007 for the quadrature
solution. For the conditionally dependent case (A;; = 0.6,A2; = 0.4 or 0.0 ':\
and As; = 0.4 or 0.0), the average differences were .000218 for algorithm ::
‘ #1, .000242 for algorithm #2, .000329 for the quadrature solution. -
s

8 DISCUSSION o
b

The results of this study clearly demonstrate that when the assumption of ‘:
conditional independence is violated, bias in the standard IRT probability .
estimates are produced. Both modified Clark algorithms presented here .
minimize this bias; however, algorithm #2 produces slightly more accurate \
results than algorithm #1 for small numbers of items, at a remarkable sav- ':
ings in computation. Algorithm #2 decreases the required computation by ;:
a factor of ¢™, where m is the number of underlying dimensions and ¢ is b

the number of quadrature points in each dimension. When compared to
the standard quadrature solution, algorithm #2 requires an additional s
evaluations of the Clark algorithm, where s is the number of uniquely ob- 0
served response patterns. Conversely, when method related factors do exist, a§
multiple-factor solutions will greatly increase the computational complex- ¢
ity of the standard IRT approach, whereas no increase in computation is
required for algorithm #2.

1t is important to point out that the use of these approximations should
not replace multiple factor solutions where the additional factors contribute
to our understanding of individual differences. Indeed, the methods de-
scribed here treat these potentially meaningful effects as errors of measure-
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ment. By allowing for more general types of measurement variability, these
methods can mask important characteristics of item-person interactions.

There are, however, situations where small method related effects confound ‘,:j
our ability to accurately characterize the dominant dimension of interest, s
because the inter-item association is not strictly a function of a single un- ::
derlying trait. In these cases, the ability to segment these more complex ‘;'

measurement errors from our estimates of the central trait or aptitude of
interest is a highly desirable goal of measurement.

Our future research in the application of the Clark algorithm for likel- o
hood evaluation of IRT models, will focus on the estimation of ability. When ::
method related factors violate the assumption of conditional independence, X
current methods for estimating ability (Bock and Aitken, 1981) will pro- Y
duce incorrect results. Some preliminary work in this area suggests that the .
variance in Bayes “expected a posteriors® estimates (EAP) for fixed levels :‘
of ability, increases by a factor of 2 to 3 in the presence of even moderate ‘:
dependence. Substituting Clark estimates for the conditional probabilities .
that are usually employed in calculating EAP estimates should account for ¢

‘ this “extra” normal variability, and therefore, provide more accurate ability t
estimates. v,

In addition, we will also further explore the difference between our two :;
modified Clark algorithms, by focusing on their behavior at individual points . :
in the quadrature space. In this way, we hope to even further improve the W
performance of algorithm #1 relative to algorithm #2, and perhaps, develop L*
a third procedure which is an improvement over both. :;!.
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TABLE 1
COMPOUND SYMMETRY
Average Difference
r Algorithm #1 Algorithm #2 Quadrature Clark
2 0.0007 0.0003 0.0003 0.0022
3 0.0011 0.0003 0.0003 0.0034
4 0.0019 0.0002 0.0003 0.0049
S 0.0009 0.0002 0.0003 0.0068
6 0.0016 0.0002 0.0002 0.0091
7 0.0022 0.0002 0.0002 0.0122
_8_ 0.0006 0.0008 0.0007 0.0163
16
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TABLE 2
AUTOCORRELATION

Average Difference

p Algorithm #1 Algorithm #2 Quadrature Clark
2 0.0013 0.0013 0.0037 0.0017
3 0.0022 0.0021 0.0051 0.0026
4 0.0031 0.0028 0.0062 0.0037
.5 0.0040 0.0036 0.0070 0.0050
(] 0.0050 0.0044 0.0075 0.0067
7 0.0054 0.0051 0.0075 0.0090
8 0.0060 0.0054 0.0071 0.0121
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Table 3
CONDITIONAL DEPENDENCE

Average Difference
A1 CD Algorithm #1 Algorithm #2 Quadrature Clark

S 2 0.0011 0.0005 0.0014 0.0023
3 0.0016 0.0011 0.0031 0.0024

4 0.0022 0.0020 0.0054 0.0031

5 0.0034 0.0031 0.0084 0.0041

6 0.0047 0.0045 0.0121 0.0057

T 0.0075 0.0065 0.0173 0.0083

6 .2 0.0018 0.0006 0.0015 0.0034
3 0.0025 0.0014 0.0032 0.0037

4 0.0031 0.0025 0.0058 0.0046

5 0.0047 0.0039 0.0089 0.0060

‘ .6 0.0070 0.0058 0.0130 0.0081
T 0.0123 0.0083 0.0204 0.0120
a2 0.0015 0.0008 0.0016 0.0052
3 0.0026 0.0018 0.0036 0.0057

4 0.0041 0.0031 0.0063 0.0070

5 0.0068 0.0048 0.0099 0.0091

.6 0.0117 0.0073 0.0159 0.0125

T 0.0242 0.0170 0.0305 0.0229
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Table ¢ g
COMPOUND SYMMETRY <
p=08 'y
25 PATTERNS FOR 10 ITEMS .::
ot
Pattern Algorithm #1  Algorithm %2 Quadrature Monte Carlo ':0
¥
)
1111111111 .097932 001086 .090469 090958 "
1111111110 .009608 009115 009098 009055 -
1111111101 009229 009119 .009095 009049 .
1111111100 .002018 .002018 .002018 002011 \
1111111011 .008887 009122 .000096 009094 be.
1111111010 .001965 .002016 .002018 002024 By
1111111001 001980 002017 .002018 002008 g
1111111000 .000798 .000788 .000761 000758 '
1111110111 .008578 .009125 009095 009077 o
1111110110 .001917 .002017 002018 002021
1111110101 .001930 .002018 .002018 002018 "
1111110100 .000780 .000758 .000761 000759 1}'
1111110011 .001948 002019 002018 002018 N
1111110010 .000779 000758 .000761 000747 )
1111110001 .000781 .000758 .000761 .000769 2
1111110000 000478 .000432 .000434 000436 z
1111101111 .008302 .009126 .009095 009126 v
‘ 1111101110 001874 002017 002018 002050 +
1111101101 .001885 002018 .002018 002015 e
1111101100 .000768 .000758 .000761 000741 0:
1111101011 .001901 .002019 .002018 .002040 o
1111101010 .000767 .000768 .000761 .000788 \
1111101001 .000768 .000759 .000761 .000750 '.4
1111101000 000473 .000432 .000434 000433 \
1111100111 .001924 ,002019 .002018 002037 .
REMAINING PATTERNS 881716 836967 837527 837249 s
AVERAGE DIFFERENCE .000085 .000007 .000007 ¢
)
4
-
5
\
LYy
L “
L]
r “:
W
R
1
!
\J
'y,
U
Y
13
B %
19 s Ot
N,
*n




:
o
',
!
~
‘ %
B 3
»
‘A
.
.
b
Table § -
CONDITIONAL DEPENDENCE -
A, =06 2
Az; and Ag; = 0.4 or 0.0 :
28 PATTERNS FOR 10 ITEMS Al
— >
Pattern Algorithm #1  Algorithm #2 Quadrature Monte Carlo ) ¢
%
~
1111111111 .05863%0 099093 049837 071364
1111111110 .008148 .010862 .007744 008396 ‘ W,
1111111101 .007586 010758 .007744 008384 $\
1111111100 .002818 .0028658 002115 002726 :I’
1111111011 .007119 .010809 007744 .008387 !
1111111010 .002676 .002399 .002115 .002707 .\"
1111111001 .002648 002432 .002118 002743 W
1111111000 .001620 0000938 .000889 001767 3 4
1111110111 006694 .010780 007744 008432 .
1111110110 002694 002414 .002116 002732 o
1111110101 002828 002429 .002115 002728 K¢
1111110100 .001882 .001008 .000889 001743
1111110011 002482 002438 .002115 002749 -
1111110010 001572 001012 000889 001762 Yo
1111110001 001547 0010186 000889 001751 .:
: 1111110000 .001434 000732 000639 002087
‘ 1111101111 006241 010813 007744 008458 " .
1111101110 .002570 .002417 .002118 .002767 ~
1111101101 .002458 .002409 .002118 .002741 o
1111101100 .001592 .001025 .000889 001782 .
1111101011 .002870 .002398 .002118 002728 ¥
1111101010 .001561 .001021 .000889 .001760 L3,
1111101001 001518 .001015 000889 .001744 ¥
1111101000 001444 000748 0005839 .002076
1111100111 .002300 .002362 .002115 .002720 (RN
REMAINING PATTERNS 868271 .814880 .882800 842793 o~
AVERAGE DIFFERENCE .000218 .000242 .000329 .
4
'y,
s
e
N
'
]
)
o'
]
.(
iy
L 4
0
. 20 [y
(L]
L.l‘
e
"
\ e W n W TR LIL TR T N - ‘.“
» 88T 8 0 e T e e S VN 0T Ve e Y, :l.“,i.', MICLM AN .h,, A Ry Mol ‘,,. A -,."_.,. ] .y.. .‘ (Y )¢ iol W O .‘l'n'l'.o'n




! 1987/05/21

University of Illinois-Chicago/Gibbons

Dr. Terry Ackerman

Amgrican Coliege Testing Programs
P.0. Box 168
Iowa City, IA 52243

Dr. Robert Ahlers

Code N711

Human Factors Laboratory
Nava! Training Systems Center
Orlando, FL 32813

Dr. James Algina
University of Florida
Gainesville, FL 32605

Dr. Erling B. Andersen
Department of Statistics
Studiestraede 6

1455 Copenhagen

DENMARK

Or. Eva L. Baker

UCLA Center for the Study
of Evaluation

145 Moore Hall

University of California

Los Angeles, CA 90024

DOr. Isaac Bejar
Educational Testing Service
Princeton, NJ 08450

Dr. Menucha Birenbaum
Schoo! of Education

Tel Aviv University

Te! Aviv, Ramat Aviv 69978
1SRAEL

Or. Arthur S. Blaiwes

Code N71!

Naval Training Systems Center
Orlando, FL 32813

Or. Bruce Bloxom
Defense Manpower Data Center
S50 Camino El Estero,
Suite 200
Monterey, CA 93943-3231

Dr. R. Darreli Bock
University of Chicago
NORC

6030 South Ellis
Chicago, IL 60637

Cdt. Arnold Bohrer

Sectie Psychologisch Onderzoek
Rekruterings-En Selectiecentrum
Kwartier Koningen Astrid
Bruijnstraat

1120 Brusse s, BELGIUM

Dr. Robert Breaux

Code N-0SSR

Naval Training Systems Center
Orlando, FL 32813

Dr. Robert Brenn:n

American College Testing
Programs

P. 0. Box 168

Iowa City, IA 52243

Dr. Lyle D. Broemeling
ONR Code 1111SP

800 North Quincy Street
Arlington, VA 22217

Mr. James W. Carey
Commandant (G-PTE)

U.S. Coast Guard

2100 Second Street, S.NW.
Washington, DC 20593

Dr. James Carison

American College Testing
Program

P.0. Box 168

Iowa City, A 52243

Or. John B. Carrol|l
409 Elliott Rd.
Chapel Hill, NC 27514

Or. Robert Carrol|
0P 0187
Washington, DC 20370

Mr. Raymond E. Christal
AFHRL /MOE
Brooks AFB, TX 78235

(A LA

Sy By S W W

.

." -‘,_ '-“-.’ et e”




L 8 b g e s e Pl ad

L RS Y UM PRSI AN R R L AN U " (NS bg” N

1987705721

University of Illinois-Chicago/Gibbons

Dr. Norman Cliff
Department of Psychology
Univ. of So. California
University Park

Los Angeles, CA 90007

Director,
Manpower Support and
Readiness Program
Center for Naval Analysis
2000 North Beauregard Street
Alexandria, VA 22311

Dr. Stanley Coliyer

Office of Naval Technology
Code 222

800 N. Quincy Street
Artington, VA 22217-5000

Dr. Hans Crombag
University of Leyden
Education Research Center
Boerhaavelaan 2

2334 EN Leyden

The NETHERLANDS

Mr. Timothy Davey
University of Illinois
Educational Psychology
Urbana, IL 61801}

Dr. Dattprasad Divgi
Center for Naval Analysis
4401 Ford Avenue

P.0. Box 16268
Alexandria, VA 22302-0268

Or. Hei-Ki Dong

Be!!l Communications Research
6 Corporate Place

PYA-1k228

Piscataway, NJ 08854

Dr. Fritz Drasgow
University of Illinois
Department of Psychology
603 E. Daniel St.
Champaign, IL 61820

DY L Y Y e e e

Defense Technical
Information Center
Cameron Station, Bldg S
Alexandria, VA 22314

Attn: TC
(12 Copies)

Dr. Stephen Dunbar
Lindquist Center
for Measurement
University of lowa
Iowa City, IA 52242

Dr. James A. Earles
Air Force Human Resources Lab
Brooks AFB, TX 78235

Dr. Kent Eaton

Army Research Institute
500! Eisenhower Avenue
Alexandria, VA 22333

Dr. John M. Eddins

University of [llinocis

252 Engineering Research
Laboratory

103 South Mathews Street

Urbana, IL 61801

Dr. Susan Embretson
University of Kansas
Psychology Department
426 Fraser

Lawrence, KS 66045

Dr. Benjamin A, Fairbank
Performance Metrics, Inc.
5825 Callaghan

Suite 225

San Antonio, TX 78228

Or. Pat Federico

Code St

NPRDC

San Diego, CA 92152-6800

Or. Leonard Feldt
Lindquist Center
for Measurement
University of lowa
lIowa City, 1A 52242

R TR

AR




1987/05/21

University of Illinois-Chicago/Gibbons

Or. Richard L. Ferguson

American College Testing
Program

P.0. Box 168

Iowa City, IA 52240

Dr. Gerhard Fischer
Liebiggasse 5/3

A 1010 Vienna
AUSTRIA

Dr. Myron Fischl

Army Research Institute
5001 Eisenhower Avenus
Alexandria, VA 22333

Prof. Donald Fitzgerald
University of New England
Department of Psychology
Armidale, New South Wales 2351
AUSTRALIA

Mr. Paul Foley
Navy Personne! R&D Center
San Diego, CA 92152-6800

Dr. Alfred R. Fregly
AFOSR/NL
Bolling AFB, DC 20332

Or. Robert D. Gibbons

Iifinois State Psychiatric Inst.
Rm S29W

1601 W. Taylor Street

Chicago, IL 60612

Or. Janice Gifford
University of Massachusetts
Schooi of Education
Amherst, MA 01003

Dr. Robert Glaser
Learning Research

& Development Center
University of Pittsburgh
3939 O'Hara Strest
Pittsburgh, PA 15260

Dr. Bert Green

Johns Hopkins University
Department of Psychology
Charles & 34th Straeet
Baltimore, MD 21218

. . .~ s . ‘
OO D OED SOOI A% XN Wl Nt XD XM A SN

Dipl. Pad. Michael W. Habon
Universitat Dusseldorf
Erziehungswissenschaftliches
Universitatsstr. 1

D-4000 Dusseldorf |

WEST GERMANY

Dr. Ronald K. Hamblieton
Prof. of Education & Psychology
University of Massachusetts
at Amherst
Hills House
Amherst, MA 01003

Dr. Delwyn Harnisch
University of Illinois
S1 Gerty Drive
Champaign, IL 61820

Ms. Rebecca Hetter

Navy Personne! R&D Center
Code 62

San Diego, CA 92152-6800

Dr. Paul W. Holland
Educational Testing Service
Rosedale Road

Princeton, NJ 08541

Prof. Lutz F. Hornke
Institut fur Psychologie
RWTH Aachen
Jaegerstrasse 17/19
D-5100 Aachen

WEST GERMANY

Dr. Pau!l Horst
677 G Street, #184
Chula Vista, CA 90010

Mr. Dick Hoshaw
0P-135

Arlington Annex

Room 2834
Washington, DC 20350

Dr. Lioyd Humphreys
University of Illinois
Department of Psychology
603 East Daniel Street
Champaign, IL 61820

)
~ Y AT NS Y W e '\
N IR A RN SO AR N R B



University of lllinnis-Chicago/Gibbons

Dr. Steven Hunka
Department of Education
University of Alberta
Edmonton, Alberta
CANADA

Dr. Huynh Huynh

College of Education
Univ. of South Carolina
Columbia, SC 29208

Dr. Robert Jannarone
Department of Psychology
University of South Carolina
Cotumbia, SC 29208

Dr. Denrnis E. Jennings
Department of Statistics
University of Illinois
1409 West Green Street
Urbana, IL 61801

DOr. Douglas H. Jones
Thatcher Jones Associates
P.0. Box 6640

10 Trafalgar Court
Lawrenceville, NJ 08648

Or. Milton S. Katz

Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Prof. John A, Keats
Department of Psychology
University of Newcastle
N.S.W. 2308

AUSTRALIA

Dr. G. Gage Kingsbury

Portliand Public Schools

Research and Evaluation Department
501 North Dixon Street

P. 0. Box 3107

Portland, OR 97209-3107

Or. William Koch

University of Texas-Austin

Measurement and Evaluation
Center

Austin, TX 78703

1987/05/21

o

~-

-
T,

Dr. James Kraat:z
Computer-based Education
Research Laboratory
University of [llinois

Urbana, IL 61801

Dr. Leonard Kroeker
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. Daryll Lang
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. Thomas Leonard
University of Wisconsin
Department of Statistics
1210 West Dayton Street
Madison, WI S3705

Or. Michael Levine
Educational Psychology
210 Education Bldg.
University of [llinois
Champaign, IL 61801

Dr. Charles Lewis
Educational Testing Service
Princeton, NJ 08541

Dr. Robert Linn
Cotlege of Education
University of Illinois
Urbana, IL 61801

Dr. Robert Lockman

Center for Naval Analysis
4401 Ford Avenue

P.0. Box 16268
Alexandria, VA 22302-0268

Dr. Frederic M. Lord
Educational Testing Service
Princeton, NJ 08541

Dr. James Lumsden

Department of Psychology
University of Western Australia
Nedlands W.A. 6009

AUSTRALIA




1887/05/21

University of Iilinois-Chicago/Gibbons

Dr. Milton Maier

Center for Naval Analysis
4401 Ford Avenue

P.0. Box 16268
Alexandria, VA 22302-0268

Dr. William L. Maloy

Chief of Naval Education
and Training

Naval Air Station

Pensacola, FL 32508

Dr. Gary Marco

Stop 31-E

Educational Testing Service
Princeton, NJ 08451

Or. Clessen Martin

Army Research Institute
5001 Eisenhower Bivd.
Alexandria, VA 22333

Dr. James McBride

Psychological Corporation

¢/o Harcourt, Brace,
Javanovich Inc.

1250 West 6th Street

San Diego, CA 92101

Dr. Clarence McCormick
HQ, MEPCOM

MEPCT-P

2500 Green Bay Road
North Chicago, IL 60064

Dr. Robert McKinley
Educational Testing Service
20-P

Princeton, NJ 08541

Or. James McMichael
Technical Director

Navy Personnel| R8D Center
San Diego, CA 92152

Or. Barbara Means
Human Resources

Research Organization
1100 South Washington
Alexandria, VA 22314

N ” -p - - 5 o - e e - - -p
At A ot N A N S S o S L RO T . L S Tt (L AL S M

Dr. Robert Mislevy
Educat